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Soliton Solutions of Integrable Hierarchies and
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Some direct relations are given between soliton solutions of integrable
hierarchies and thermodynamic quantities of the Coulomb plasmas on the
plane. We find that certain soliton solutions of the Kadomtsev�Petviashvili
(KP) and B-type KP (BKP) hierarchies describe 2D one- or two-component
lattice plasmas at special boundary conditions and fixed temperatures. It is
shown that different reductions of integrable hierarchies describe pure or dipole
Coulomb gases on 1D submanifolds embedded in the 2D space.

KEY WORDS: Coulomb plasmas; integrable hierarchies; tau functions;
solitons; dipole gases.

1. INTRODUCTION

Recently we have shown(1) that the grand partition functions of some 1D
lattice gas models or equivalent to them partition functions of some Ising
chains, coincide with the N-soliton tau functions of various hierarchies of
integrable nonlinear evolution equations. The present paper contains a
detailed comparison of exactly solvable Coulomb plasma models on lat-
tices with integrable equations. We discuss statistical mechanics of the
Coulomb (logarithmic interaction) gases on intrinsic 2D geometric figures
and various 1D submanifolds of the plane. In this way we do not merely
reinterpret previously known results, (2�7) but also reveal a number of new
exactly solvable (at fixed temperatures) plasma models. It is natural to
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expect that the connection with integrable equations gives a clue to the
classification of such models.

A classical Coulomb plasma is a system of charged particles interact-
ing through the Coulomb potential. On the plane this potential is defined
as a solution to the Poisson equation 2V(r, r$)=&2?$(r&r$), with certain
boundary conditions. For the plane without boundaries this equation has
the solution V(z, z$)=&ln |z&z$|, where z=x+@y. A system of particles
forms a stable plasma if the opposite valued charges do not recombine with
each other forming a gas of neutral molecules. In general the location of
plasma is constrained to some domain in which case there is a nontrivial
interaction with the boundaries of this domain. In particular, the normal
component of the electric field E=&{V should vanish on the surface of an
ideal dielectric, En=0, while the tangent component of this field vanishes
on the surface of an ideal conductor, Et=0. A useful way of solving the
Poisson equation with such boundary conditions is provided by the
method of images. In the present work we consider systems where every
charge has either a finite number of images created by the boundaries or
boundary conditions create periodic lattices of images. For a finite number
of images solution of the Poisson equation is given by a finite sum of
logarithmic potentials created by a charge and its images.

The energy of such systems of N particles has the following form

EN= :
1�i< j�N

Q iQ j V(zi , zj )+ :
1�i�N

Q2
i v(zi )+ :

1�i�N

Qi 8(zi ) (1)

where zi=xi+@yi and Q i are the coordinates and charges of the particles
on the plane. The first term in (1) is the energy of interaction between
different charges. The second terms is the sum of self-energies. In general it
arises as the energy of interaction between a charge and its own images.
The third term describes an interaction of charges with external fields.

The grand partition function of a system of particles of s different
species is

G= :
N1

n1=1

} } } :
Ns

ns=1

`n1
1 } } } `ns

s

n1! } } } ns !
Zn1 } } } ns

= :
N1

n1=1

} } } :
Ns

ns=1

1
n1! } } } ns ! | e&1Hn1 } } } ns

++1 n1+ } } } ++s ns d0

where +1 ,..., +s denote chemical potentials (`s=e +s are the fugacities) and
0 is an integration measure over the configuration space occupied by
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particles. Here we have introduced the dimensionless inverse temperature
1=;Q2, ;=1�kT, and the dimensionless Hamiltonian

Hn1 } } } ns
= 1

2 :
i{ j

qiqj V(zi , zj )+:
i

q2
i v(zi )+:

i

q i,(zi ) (2)

where qi=Qi �Q and ,(z)=8(z)�Q. For one and two component plasmas
it is convenient to choose Q=|Qi |, so that the dimensionless charges qi=1
in the one component case and qi=\1 in the two component case.

The 2D one and two component plasma models have been solved for
a variety of boundary conditions at a special value of the inverse tem-
perature 1=2 (see, e.g., refs. 2�7 and references therein). In technical terms
the solution is possible due to different determinant representations (the
Cauchy determinant for the two component plasma and the Vandermonde
determinant for the one component case). Such representations allow one
to solve models of log-gases on a line with the transverse boundary condi-
tions (e.g., see ref. 7). Note that the majority of previous works is devoted
to the continuous space models, for an account of the lattice cases see,
e.g., refs. 1, 2, 6. The literature on the Coulomb gases is enormous, many
statistical mechanics models have been related to them, (8) there is a relation
to conformal field theories, etc. Still, the identification of Coulomb plasmas
on lattices with some boundaries and of the famous multisoliton systems
has been missed in the previous investigations.

2. BASIC OBSERVATIONS

Let us consider a Coulomb plasma on a lattice. We suppose that each
type of particles can occupy only a discrete set of points in the complex
plane. E.g., in the two component case the positive and negative charge
particles occupy sublattices [z+] and [z&]. We denote the union of all
sublattices as [z]. No more than one particle is allowed at each site. In this
case, the integrals over 0 are replaced by discrete sums over the lattice
points and the whole partition function can be rewritten in the following
form(9)

G= :
[_]

exp \ 1
2 :

z{z$

W(z, z$) _(z) _(z$)+ :
[z]

w(z) _(z)+ (3)

W(z, z$)= &1q(z) q(z$) V(z, z$), w(z)=+(z)&1 (q2(z) v(z)+q(z) ,(z))

(4)

753Integrable Hierarchies and Coulomb Plasmas



and _(z)=0 or 1 is an occupation number of the site with the coordinate z.
The variables q(z), +(z) are some functions of the lattice coordinates. For
example, q(z\)=\1, +(z\)=+\ for the two component plasma.

Now, let us write out the {-function of N-soliton solutions of some
integrable hierarchy in the Hirota form(10)

{N= :
_=0, 1

exp \ 1
2 :

z{z$

Azz$_(z) _(z$)+ :
[z]

%(z) _(z)+ (5)

where the variable z takes N discrete values describing spectral charac-
teristics of solitons. The function %(z) parameterizes phases of solitons with
the index z and Azz$ is the phase shift acquired as a result of the scattering
of solitons with the indices z and z$ off each other.

Evidently, the expressions (3) and (5) have the same form. One just
needs to make proper identifications between the phase shifts Azz$ and the
interaction potentials W(z, z$), and between the phases %(z) and the func-
tion w(z). Such an identification appears to be valid for the celebrated
Korteweg�de Vries (KdV) equation and higher order members of the
KdV-hierarchy, Kadomtsev�Petviashvili (KP) hierarchy and its B-type
reduction, and some other integrable equations.(10) In the next section we
consider in detail an identification of the KP hierarchy solitons and plasma
particles.

Before passing to that let us remark that lattice gas models are related
to the Ising models.(9) Indeed, substituting _(z)=(s(z)+1)�2, s(z)=\1,
into (3), we get a formula for the partition function of an Ising model up
to some constant multiplicative factor

G= :
[s]

exp \ 1
2 :

z{z$

J(z, z$) s(z) s(z$)+ :
[z]

H(z) s(z)+ (6)

where the exchange constants J(z, z$) and the magnetic field H(z) have the
form (we have absorbed the variable 1 into their definition)

J(z, z$)= 1
4 W(z, z$), H(z)= 1

2w(z)+ 1
4 :

z$, z${z

W(z, z$) (7)

Technically, it appears that the Ising representation of the lattice plasma
grand partition function is more convenient for writing it in the determi-
nant form.

3. KP HIERARCHY

Multisoliton solution of the KP-hierarchy is presentable in the form
(5) with the following parameterization of the soliton phases and phase
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shifts (we borrow this expression from ref. 11 where an explicit form of the
equations themselves can be found as well):

Azz$ =ln
(az&az$)(bz&bz$)
(as+bz$)(bz+az$)

, %(z)=%(0)(z)+ :
�

p=1

(a p
z &(&bz) p) tp (8)

where tp is the p th KP ``time'' and az , bz are some arbitrary functions of z.
If we take

az=z=x+@y, bz=&z*&x+@y, y�0

then Azz$=W(z, z$)=&2V(z, z$), where

V(z, z$)=&ln |z&z$|+ln |z*&z$| (9)

is the potential at the point z created by a positive unit charge particle
places at the point z$ over the conducting surface occupying the y�0
region (V(z, z$) solves the Poisson equation with the tangent boundary
condition Ex( y=0)=0). Equally, one may say that this is an effective
potential created by a positive charge at the point z$, Iz$>0, and its image
of opposite charge located at (z$)*. Comparing (9) with the original defini-
tion (4) one finds that the temperature is fixed and 1=2. Thus a particular
KP N-soliton solution corresponds to the Coulomb plasma in the upper
half plane Iz>0 with metallic boundary along the x-axis. The situation is
depicted in the Fig. 1.

Let us shift z � z+@a, a real and take the limit a � �, i.e., take the
plasma far away from the boundary. This leads to some divergences in the
energy which can be removed by addition of an appropriate diverging
constant to the initial Hamiltonian. As a result one gets the pure plasma
system at the inverse temperature 1=2. This value corresponds to the
standard normalization in the random matrix theory.(2) The normalization
of the temperature in our previous papers(1) was chosen as 1=1 since
there we were discussing Ising chains without detailed comparison with the
Coulomb systems which is a goal of the present work.

The identification w(z)=%(z) allows one to write the following expres-
sion for the zero-time phases %(0)(z) in (8)

%(0)(z)=+&1 (ln |z*&z|+,(z)), 1=2 (10)

where the second term corresponds to the ``charge-image'' interaction, and
the last term describes the potential of the field created by a neutralizing
background of the density \(z):

2,(z)=&2?\(z), ,z( y=0)=0 (11)
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Fig. 1. KP equation: one component two-dimensional plasma above an ideal conductor.
Positive charges are shown as white squares while their negative images are show as black
squares. Interactions between different charges are shown by dashed lines, while the interac-
tions between charges and their own images are shown by the solid lines.

Contributions from the KP ``times'' ��
p=0 (z p&(z*) p) tp=&1,ext(z)

correspond to an external electric field. Since the Laplacian of this part is
zero the corresponding density of charges is zero, i.e., this field is generated
by external distant charges. For instance, the contribution of the first time
(z&z*) t1 corresponds to the homogeneous electric field perpendicular to
the boundary. For reality of the potential the time t1 has to be purely
imaginary.

The system of distant charges gi located at the points wi above the
conductor create the following electrostatic potential at the point z

,ext(z)=&:
i

gi ln
|z&wi |
|z&wi* |

Since the external charges are fare from the origin |z|<<|wi |, we can
expand the potential ,ext(z) in the Taylor series and get as KP times

tp#
1
2p

:
i

gi \ 1
(wi*) p&

1
w p

i +
In this picture the KP times take imaginary values automatically. One may
conclude that the general imaginary times evolution of a special system of
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KP hierarchy solitons describes electrostatics of a plasma in a varying
external electric field.

Using the standard scaling arguments one can see that for the con-
tinuous space version of the present model the average pressure changes
the sign at the inverse temperature 1=2. As a result for 1�2 the particles
stick to the surface of the conductor and the system collapses. The situation
is cured if the plasma is confined to a domain which does not touch the
boundary. Such an unphysical behavior is avoided in the lattice version of
the model (the minimal lattice spacing may be interpreted as the radius of
a hard core repulsive interaction). Connection with the KP solitons takes
place exactly at 1=2.

The Poisson equation and the boundary conditions En=0 or Et=0 are
satisfied for an appropriate conformal change of the variable z � f (z). For
instance, choosing soliton parameters in (8) as az=z2, bz=&(z*)2, we
obtain

W(z, z$)=2 ln } z2&(z$)2

(z*)2&(z$)2 }
corresponding to the interaction of two charged particles in the rectangular
corner with metallic walls along the x and y axes. Higher degree monomial
maps z � zn put the plasma into a corner with the ?�n angle between the
conducting walls.

The exponential map az=exp(?z�L), bz=&exp(?z*�L), generates the
W-potential

W(z, z$)=2 ln } sinh(?�2L)(z&z$)
sinh(?�2L)(z*&z$) } (12)

which describes the plasma in the strip Iz=(0, L) between two parallel
conductors.

The choice az=exp(&?x�L), bz=&exp(&?(x+:)�L), results in

W(x, x$)=ln
sinh2(?�2L)(x&x$)

sinh(?�2L)(x&x$&:) sinh(?�2L)(x&x$+:)
(13)

Solution of the Poisson equation with periodic boundary condition along
the y-axis with the period 2L is given by the potential(7)

V(z, z$)=&ln } sinh
?

2L
(z&z$) }
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Therefore one can interpret (13) as the interaction energy of two neutral
dipoles in the periodic background with the distance between charges
in the molecule equal to : (the internal energy of dipoles is neglected).
These dipoles all lie on the x-axis and have identical orientation. Since
W=&1V, we see that the effective inverse temperature is twice smaller
than in the previous cases, i.e., 1=1.

Let az=sn2 z, bz=&sn2 z*, where sn z is the Jacobian elliptic function
with the periods Lx , @Ly . Then one gets the W-potential

W(z, z$)=2 ln } sn2 z&sn2 z$
sn2 z*&sn2 z$ }=2 ln } %1(z&z$) %1(z+z$)

%1(z*&z$) %1(z*+z$) } (14)

where %1(z) is the Jacobi theta-function. It vanishes when z lies on the
boundary of a Lx_Ly rectangle, i.e., we have the plasma in a box with
the conducting walls (1=2). For small z, z$ (or for the large size box
Lx , Ly � �) one recovers plasma in the rectangular corner.

The choice az=bz corresponds to the reduction of KP to KdV equa-
tion. However, the potential W is real in this case only for purely real or
imaginary z. Otherwise one gets complex tau function and there is no com-
plete coincidence of (3) and (5)��G is real due to the module signs in the
Coulomb potential. One may try to identify complex multisoliton solutions
with a special system of interacting electric and magnetic charges.(8) We do
not consider such possibilities and limit ourselves to the purely electric
systems with real interaction energy.

Consider the situation when lattice points [z] consists of two subsets
[z\], [z]=[z&] _ [z+]. Choosing the following identification of param-
eters in (8)

az&
=z& , bz&

=&z*& , az+
=z*+ , bz+

=&z+ (15)

we get a model of the two component plasma above an ideal conductor

W(z\ , z$\)=2 ln |z\&z$\ |&2 ln |z*\&z$\ |

W(z\ , z$�)=2 ln |z*\&z$� |&2 ln |z\&z$� |

%(z\)=+\&2 ln |z\&z*\ |�2,(z\)

The inverse temperature is again 1=2. After the conformal transforma-
tions z � z2, ez, etc. one gets the two-component plasma in the metallic
rectangular corner, a strip, etc.

One component plasma is not stable without metallic boundary or
neutralizing background, since its particles tend toward boundaries repel-
ling each other with long range forces. In the two component case screening
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is possible if the system is neutral and the temperature is high enough.
Simple scaling analysis shows that the pure two component plasma under-
goes a transition to neutral molecules in the bulk at 1=2.(2) Again, there
is no such a transition in the lattice case because of the hard-core repulsion.

It is well known that the two component homogeneous plasma
without boundaries is a specific representation of the quantum Sine-
Gordon or Thirring model.(12) The inverse temperature 1=2 corresponds
to the free fermion point, but the model is (in principle) integrable for
any 1. The Sine-Gordon model requires renormalization if the coupling
constant exceeds a critical value. The lattice spacing is equivalent to a
cutoff in the corresponding field theory. Thus it is natural to associate the
two component lattice plasma above the metallic boundary with some
discretized boundary Sine-Gordon model.

4. KP HIERARCHY: SOME REDUCTIONS

In this section we consider a number of one-dimensional reductions of
the KP hierarchy and some self-similar soliton solutions. We describe here
only the most popular integrable systems and do not cover all possible
cases and their Coulomb gas interpretations.

1. We begin with the reduction considered earlier in the literature.(2)

In this case, plasma is restricted to the line y=Y. The W-potential is trans-
lationally invariant and equals to

W(x, x$)=ln
(x&x$)2

Y2+(x&x$)2

Interaction energies of charges with their own images are constant and may
be neglected.

2. Reduction to the KdV hierarchy. In this case particles move along
the vertical line x=0 and the W-potential is

W( y, y$)=2 ln } y& y$
y+ y$ } (16)

Now a non-trivial self-interaction term B ln |2y| enters the definition of
soliton phases.

3. Discrete KdV hierarchy. The phase shifts have the form(10)

Azz$=ln
sinh2(z&z$)�2
sinh2(z+z$)�2
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Taking z to be purely imaginary z=@: we get the following result

W(:, :$)=2 ln } sin(:&:$)�2
sin(:+:$)�2 }

which corresponds to the plasma restricted to an arc with the center of the
corresponding circle at the conductor's surface. The self-interaction energy
is &ln |2 sin :|. It is sufficient to put z=e@: in (9) in order to get this
system from the KP soliton solutions.

4. The reductions admitting both left and right moving solitons
correspond to the plasma restricted to domains of disjoint parts. E.g., the
Toda lattice case(10)

Azz$=2 ln
=(z) z&=(z$) z$
1&=(z) =(z$) zz$

, =(z)=\1

corresponds for z=e@: to the two component plasma on the half circle with
the center lying upon the conductor surface. The positive charge particles
occupy the subsector : # [0, ?�2] and the negative charge particles are
located in the subsector :[?�2, ?].

5. The Boussinesq equation(13) corresponds to a one component
plasma on disjoint halves of the hyperbola 3x2= y2+1 situated above the
conductor occupying the y�0 half plane:

Ayy$ =ln
(=( y) x( y)&=( y$) x( y$))2+( y& y$)2

(=( y) x( y)&=( y$) x( y$))2+( y+ y$)2

x( y)=�y2+1
3

, =( y)=\1

It would be interesting to find the equation whose soliton phase shifts are
equal to (14).

Consider some specific lattice plasma configurations associated with
self-similar soliton solutions of integrable equations. Take first the KP
situation (12) and restrict the corresponding plasma to a line parallel to the
conductor surfaces Iz=Y. Applying this constraint, we get

W(x&x$)=&ln \sin2 ?Y
L

coth2 ?(x&x$)
2L

+cos2 ?Y
L +
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The simplest self-similar reduction corresponds to the homogeneous one-
dimensional lattice parallel to the x-axis. Then the n th charge has the coor-
dinates zn=X+hn+@Y, where X is some fixed constant and h is the lattice
spacing. In this case soliton momenta az and bz form one geometric
progression. The simplest KdV self-similar reduction corresponds to the
case when the line is located at equal distances between parallel conductors
Y=L�2:

W(x&x$)=ln tanh2 ?(x&x$)
2L

(17)

The M-periodic reduction corresponds to the situation when soliton
momenta are composed from M distinct geometric progressions. In this
case the lattice [z] consists of M homogeneous sublattices. In the plasma
language it corresponds to the model where plasma moves on M distinct
parallel lines between two conductors with the coordinates [z]=[@Yp+
Xp+nh, p=1,..., M, n=0, 1,...]. If one sets Yp=L�2 then all these sublat-
tices are situated upon the middle line and this case corresponds to the
general self-similar KdV soliton potentials of ref. 14.

In a similar way one can place plasma upon M parallel lines with fixed
x-coordinates, x=Xp , which are situated above the y�0 conductor. In
this case self-similar lattices are described by restriction of y to the union
of M geometric progressions [z]=[Xp+@Yp qn, q<1]. However, such
configurations are not safe from the collapse of particles on the walls. The
KP self-similar systems are richer than the ones of the KdV or BKP (to be
considered below) equations due to the presence of non-trivial translational
parts Xp (or Yp) in the parameterization of the corresponding soliton spec-
tral data az , bz .

Note that the Ising models emerging in this formalism look natural
only in the reduced 1D case, when there are no restrictions upon the values
of spins at different points. In the 2D picture with boundaries one has to
assume that the configuration of spins satisfies some geometric constraints
which do not have natural meaning similar to the one existing in the elec-
trostatics. This leads to exchanges which depend not only on the distance
between the spins but on the distance to the boundaries as well.

5. BKP HIERARCHY

Multisoliton solution of the B-type KP(BKP) hierarchy has the same
form (5) with the following phase shifts and soliton phases (see ref. 11 for
these items and the equations themselves):
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Azz$ =ln
(az&az$)(bz&bz$)(az&bz$)(bz&aa$)
(az+az$)(bz+bz$)(az+bz$)(bz+az$)

(18)

%(z)=%(0)(z)+ :
�

p=1

(a2p&1
z +b2p&1

z ) t2p&1

where t2p&1 are the BKP ``times.'' If we take one component plasma and
fix az=z=x+@y, bz=z*, x>0, y�0, then Azz$=W(z, z$)=&2V(z, z$),
where

V(z, z$)=&ln |z&z$|&ln |z*&z$|+ln |z+z$|+ln |z*+z$|

is the total interaction energy between unit charge particles at the points z,
Iz>0, Rz>0, and z$, Iz$>0, Rz$>0, in a domain of the upper right
quarter of the plane with an ideal dielectric boundary along the x-axis and
an ideal conductor wall along the y-axis. This situation is depicted in the
Fig. 2. Comparing with the definition (4) we see that the inverse tem-
perature is fixed and equals to 1=2.

Fig. 2. BKP equation: a one component two-dimensional plasma in the corner between an
ideal dielectric (the horizontal axis) and an ideal conductor (the vertical axis). Positive
charges are shown as white squares while their negative charge images are shown as the black
squares. Interactions between different charges are shown by dashed lines, while the self-inter-
actions between charges and their own images are shown by the solid lines.
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If the plasma is taken far away from the corner by appropriate transla-
tions, then one gets the pure plasma systems at the effective temperature
1=2. Sliding along the y-axis to infinity one comes to the previously con-
sidered plasma associated with the KP equation. Sliding along the x-axis
requires a renormalization of the zero energy level after which one gets a
plasma above the surface of a dielectric. If we place charges upon the y=0
axis, then the dielectric boundary condition disappears and we get

W(x, x$)=4 ln }x&x$
x+x$ }

which corresponds to the plasma model induced by the KdV equation at the
inverse temperature 1=4, which is twice higher than in the appropriate KP
reduction case.

Identification of the initial phase %(0)(z) in (8) is as follows

%(0)(z)=2 ln |z*&z|&2 ln |z*+z|&2 ln |2z|++&2,(z)

where the meaning of all terms is similar to that of (10), (11). Contribution
of the BKP ``times'' ��

p=1 (z2p&1+(z*)2p&1) t2p&1 corresponds to an elec-
tric field created by external charges satisfying the appropriate boundary
conditions.

In complete parallel with the KP case one can consider conformal
transformations z � zn, ez, etc. and map plasma to various geometric con-
figurations. Considering systems with two sublattices like (15) one arrives
at models of two component plasma in the metal-dielectric corner or other
bounded regions.

Consider real self-similar reductions of the BKP hierarchy corre-
sponding to dipole gases on a line between two conductors. Choosing ai=
exp(&?hi�L), bi=&exp(&?(hi+:)�L), i=1,..., N, we get an expression
for the grand partition function of the form (3) for a homogeneous lattice
gas (here we simply identify ith particle coordinate with i). The particles of
this gas interact via the following W-potential

Wd (i& j)=W(h(i& j))& 1
2 W(h(i& j)&:)& 1

2W(h(i& j)+:) (19)

with W given by (17). It is seen immediately that this is the potential of
two dipole molecules consisting of two opposite charges situated at the dis-
tance : from each other without the part describing interaction of charges
inside the dipoles (which is constant). The distance between molecules at
ith and j th site is h(i& j), where h denotes the lattice spacing. The dipoles
move along the line situated at equal distances 1�2L from two parallel con-
ductors (see Fig. 3). All dipoles are oriented in one direction. Due to the
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Fig. 3. BKP: dipole gas on the line between two ideal conductors. The dipoles are neutral,
oriented identically and lie upon the homogeneous lattice.

dipole gas interpretation one has the inverse temperature 1=1��this is a
demonstration of some discrete temperature renormalization effect.

If one takes ai as above but changes the sign of bi (i.e., shifts : � :+@L),
then the signs of the second and third terms in (19) are changed too. This
situation corresponds to a dipole gas on the middle line, the dipoles being
charged molecules of total charge +2 with the same distance between
charges :. These molecules are positioned similar to the previous case.

Another lattice gas model of charged dipoles appears if one replaces :
in (19) by @(:+L), 0<:<L. In this case charged dipoles are positioned
vertically and symmetrically with respect to the middle line y=L�2. The
case when : in (19) is replaced by @:, 0<:<L, corresponds to the neutral
dipoles gas in the strip between dielectric walls. The dipoles are per-
pendicular to the middle line y=L�2, similar to the previous case, and
have an identical orientation.

The M-periodic self-similar reductions,(1, 14) when ai+M=qai , bi+M=qbi ,
describe the gas consisting of M different types of dipoles. In some particular
cases this leads to dipole gases with different orientations of neutral or
changed molecules in a strip between the conducting walls. For instance,
for the choice

a2i=e&(?�L)(2ih&:�2), b2i=&e&(?�L)(2ih+:�2)

a2i+1=e&(?�L)((2i+1) h+:�2), b2i+1=e&(?�L)((2i+1) h&:�2)

neutral dipoles situated at the even and odd sites have opposite directions.
Here one may note that the formal substitution _(i) � (&1) i _(i)+1&
(&1) i in the grand partition function converts the interaction energy
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between molecules to the previous form (19). However, this transformation
changes the form of interaction with external fields. The 2M-periodic
reduction

a2 jM&M =e&?�L(2 jh&@:M )

b2 jM&M=e&?�L(2 jh+@:M )

a2 jM&M+1=e&?�L(2 jh&@:M&1),...

b2 jM&M+1=e&?�L(2 jh+@:M&1),...

a2 jM&1=e&?�L(2 jh&@:1)

b2 jM&1=e&?�L(2 jh+@:1)

a2 jM=e&?�L((2 j+1) h+@:1),...

b2jM= &e?�L((2 j+1) h&@:1),...

a2 jM+M&2=e&?�L((2 j+1) h+@:M&1)

b2 jM+M&2=&e&?�L((2 j+1) h&@:M&1)

a2 jM+M&1=e&?�L((2 j+1) h+@:M )

b2 jM+M&1=&e&?�L((2 j+1) h&@:M )

describes a gas of neutral dipoles lying on the middle line between two
ideals dielectrics. Dipoles are pointed normally to the boundaries. They can
switch their orientations (``up'' and ``down'') and internal degrees of
freedom are characterized by M different dipole moments :j . In general, we
have to introduce M different chemical potentials describing ``internal
energy'' of the dipole molecule.

Another possible generalization describes mixtures of the +2 charge
molecules with both parallel and perpendicular orientations of dipoles.
Such models can describe polar plasmas where molecules can perform
discrete rotations by ?�2. More complicated types of mixtures of plasma
particles are possible as well. Several physical variables can be calculated
here. These are the number density, polarization and the pressure. Using
the methods of soliton theory the {-functions (5) can be represented as
determinants of some matrices which is of great help for evaluations of the
partition functions. For the self-similar cases these matrices appear to have
the Toeplitz form and, as a result, they can be diagonalized by the discrete
Fourier transformation. So, using the connection with Ising models the
BKP-results of ref. 1 can be easily rewritten in the Coulomb gas language
as well.
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6. CONCLUSIONS

Constructions considered so far have one essential drawback from the
point of view of statistical physics: partition functions derived from the
{-functions of integrable hierarchies have fixed temperatures. A possible
way of overcoming this obstacle is to look for some quantum generaliza-
tions of classical hierarchies.

Grand partition function of two component plasma can be expressed
in terms of the following equivalent field theories: Sine-Gordon, Thirring or
sigma-model.(12) Lattice versions of the neutral Coulomb plasma corre-
spond to some discretizations of these models: lattice Sine-Gordon, scalar
Hubbard or XXZ model. The two component plasma at the inverse tem-
perature 1=2 is mapped onto the free fermion point, e.g., of the 1D scalar
Hubbard model. It can also be mapped to free spin 1�2 fermions on the
lattice.(6) It is known(11) that the soliton equations can be derived in the
framework of the free fermion formalism and they are equivalent to Plucker
relations on the infinite dimensional Grassmanian manifold. From our
point of view, the relation of Coulomb plasmas to the theory of integrable
hierarchies described here sheds some new light on the relation between
fermion models and different kinds of plasmas at fixed temperatures.

Variation of the temperature from the critical value, which in some
models (e.g., in the 1D Ising chains picture) is not qualitatively dis-
tinguished from the other ones, would correspond to a generalization of the
free fermion formalism for integrable hierarchies to the case of interacting
fermions. Unfortunately, general principles of building the corresponding
generalizations of the {-function is not known. E.g., in one of the possible
approaches, (15) where the quantum nonlinear Schro� dinger equation is dis-
cussed, the notion of {-function is clearly defined only in the limiting cases
of the free fermion points (e.g., for the impenetrable Bose gas). It is not
obvious that solutions of the corresponding integro-differential equations
can be expressed in terms of a {-function at general couplings and that such
a function would make sense in the plasma picture.

Concluding this article we discuss possible physical significance of the
models considered in it going beyond the Coulomb gas picture. As was
shown in ref. 1 there are nice interpretations of the 1D cases from the point
of view of Ising magnets. However, various boundary conditions arising
within the intrinsically 2D Coulomb interaction systems look somewhat
artificial in the Ising picture. Still, a number of 2D Ising models with such
non-local exchange can be formulated which are exactly solvable by the
techniques due to Gaudin.(2)

Another possible application concerns the fractional quantum Hall
effect (FQHE). It was shown by Laughlin that the correlation functions in
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the appropriate state of the FQHE at the filling factor 1�m coincide with
those of the one component Coulomb plasma for 1=2m. Our model is a
bit different from the pure plasma case, since we have non-trivial boundary
conditions. However, by placing the domain of concentration of the
charged particle far from the boundary we get the Laughlin plasma. The
connection with integrable hierarchies is then valid for the Laughlin states
at the full filling 1�m=1.
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